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Figure 1: Image editing using our approach for inversion demonstrates significant speed-up and
improved quality compared to previous state-of-the-art methods. Results are shown for both Latent
Diffusion models and fast Latent consistency models.

Abstract

Diffusion inversion is the problem of taking an image and a text prompt that
describes it and finding a noise latent that would generate the image. Most current
inversion techniques operate by approximately solving an implicit equation and
may converge slowly or yield poor reconstructed images. Here, we formulate
the problem as finding the roots of an implicit equation and design a method to
solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known
technique in numerical analysis. A naive application of NR may be computationally
infeasible and tends to converge to incorrect solutions. We describe an efficient
regularized formulation that converges quickly to a solution that provides high-
quality reconstructions. We also identify a source of inconsistency stemming from
prompt conditioning during the inversion process, which significantly degrades the
inversion quality. To address this, we introduce a prompt-aware adjustment of the
encoding, effectively correcting this issue. Our solution, Regularized Newton-
Raphson Inversion, inverts an image within 0.5 sec for latent consistency models,
opening the door for interactive image editing. We further demonstrate improved
results in image interpolation and generation of rare objects.

1 Introduction
Text-to-image diffusion models [1, 25–27] can generate diverse and high-fidelity images based on
user-provided text prompts. These models are further used in several important tasks that require
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inversion, namely, discovering an initial noise (seed) that, when subjected to a backward (denoising)
diffusion process along with the prompt, generates the input image. Inversion is used in various
tasks including image editing [11], personalizaton [8, 9], seed noise interpolation [28], for semantic
augmentation and generating rare concepts [29].

As inversion became a critical building block in various tasks, several inversion methods have been
suggested. Denoising Diffusion Implicit Models (DDIM) [32] introduced a deterministic and fast sam-
pling technique for image generation with diffusion models. However, DDIM inversion transforms an
image back into a latent noise representation by approximating the inversion equation. Although this
approximation makes it very fast, it also introduces an approximation error (as explained in section 3),
causing noticeable distortion artifacts in inverted images. This is particularly noticeable in consistency
models [19, 30], with large gaps between the diffusion time-steps, and where inference is achieved
with only 2 – 4 DDIM steps. Several attempts have been made to address the inconsistencies in DDIM
Inversion [22, 23, 33], which lead to poor reconstruction. AIDI [23] solved the DDIM-inversion
implicit equation using fixed-point iterations [23], a numerical scheme with linear convergence
rate, while [12] addresses the minimization of the residual error in that equation by gradient descent.
Despite these methods showing improvements over previous approaches, their reconstruction and
editing performance remain poor and often require extensive amounts of time.

In this paper, we frame the diffusion inversion problem as finding specific roots of an implicit function
and propose a solution based on the Newton-Raphson (NR) numerical scheme [16]. Widely used in
numerical analysis for its robustness and speed, NR (theoretical) quadratic convergence rate [2, 3, 6],
enables very fast inversion. However, we find that a naive application of standard NR often fails to
find the correct root, leading to significant distortions in the reconstructed images. We show that this
issue can be resolved by regularizing the objective with a prior, derived from the training process
of diffusion models. We name our approach RNRI, for Regularized Newton Raphson Inversion.
RNRI converges to a consistent inversion of an image in a small number of steps at each diffusion
stage. In practice, 1-2 iterations are sufficient for convergence that yields significantly more accurate
results than other inversion methods. RNRI requires no model training or finetuning, no prompt
optimization, or any additional parameters. It can be combined with all pre-trained diffusion models,
and we demonstrate its benefits to inversion of latent diffusion models (LDM) [26] and of latent
consistency models (LCM) [30]. Figure 1 demonstrates the quality and speed of RNRI for editing,
compared to a SoTA inversion method. Using latent diffusion models that require 50 DDIM steps,
our approach can edit real images within 1.9 seconds. For latent consistency models requiring just 4
DDIM steps, the process converges in only 0.5 seconds. To the best of our knowledge, this speed
allows users to edit images on-the-fly, using text-to-image models, for the first time.

In practice, high-quality editing using LDM or LCM requires applying classifier-free guidance with
a large guidance scale. Similar to [13, 22, 24], we also identify that inversion with high guidance
scale significantly degrades the results. When images are encoded into the latent space their encoding
often miss-aligns with the prompt. We demonstrate that applying a brief adjustment to the encoding
substantially enhances the inversion quality of all iterative methods.

We evaluate RNRI extensively. First, we directly assess the quality of inversions found with RNRI
by measuring reconstruction errors, showing comparable results to [22, 33] but with ×4 to ×12
speedup gain. We then demonstrate the benefit of RNRI in two downstream tasks (1) In Image
editing, RNRI smoothly changes fine details in the image in a consistent and coherent way, whereas
previous methods struggle to do so. With RNRI inversion, we achieve the fastest editing times, where
in the case of latent consistency models a single edit takes less than 0.5 seconds. This capability
significantly enhances real-time editing possibilities. (2) In Rare concept generation with [29], and
seed interpolation [28], that require diffusion inversion. In both of these tasks, RNRI yields more
accurate seeds, resulting in superior generated images, both qualitatively and quantitatively, using the
methods in [28, 29].

2 Related work

Text-to-image diffusion models [1, 25–27] translate random samples (seeds) from a high-dimensional
space, guided by a user-supplied text prompt, into corresponding images. DDIM [32] is a widely used
deterministic scheduler, that demonstrates the inversion of an image to its latent noise seed. When
applied to inversion of text-guided diffusion models, DDIM inversion suffers from low reconstruction
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accuracy that is reflected in further tasks, particularly when the classifier-free guidance constant is
large [22]. This happens because it relies on a linear approximation, causing a propagation of errors
that result in inaccurate image reconstruction and the loss of content. Recent studies [13, 22, 23, 33]
address this limitation. Null-text inversion [22] optimizes the embedding vector of an empty string.
This ensures that the diffusion process calculated using DDIM inversion, aligns with the reverse
diffusion process. [21] replace the null-text embedding with a prompt embedding instead. This
enhances convergence time and reconstruction quality but results in inferior image editing quality. In
both [22] and [21], the optimized embedding must be stored, resulting in nearly 3 million additional
parameters for each image (using 50 denoising steps of StableDiffusion [26]).

EDICT [33] introduced invertible neural network layers, specifically Affine Coupling Layers, to
compute both backward and forward diffusion paths. However effective, it comes at the cost of pro-
longing inversion time. BDIA [34] introduced a novel integration approximation designed for EDICT,
enhancing its computational efficiency while maintaining accurate diffusion inversion. Nevertheless,
it still requires significantly more time (10 times longer than DDIM Inversion). AIDI [23] uses an
accelerated fixed-point iteration technique at each inversion step to address the implicit function
posed by DDIM equations. ExactDPM [13] utilizes gradient-based methods to achieve an effective
inversion. ReNoise [10] further extends the work of [23] for Latent consistency models.

Alternative approaches proposed in [4,15] suggest inverting with a DDPM scheduler instead of DDIM.
They begin by constructing auxiliary images x1, ..., xT and then extracting noise maps z1, ..., zT to
achieve error-free image reconstruction. Despite their effectiveness, the stochastic nature of these
methods presents several challenges. Firstly, it necessitates storing T + 1 latents for every inverted
image, resulting in an additional 16K × T parameters. Secondly, the method is solely applicable
to reconstruction and editing tasks. Lastly, DDPM inversion typically yields lower-quality results
compared to DDIM inversion [14]. Since our focus is on DDIM deterministic inversion, these papers
fall outside the scope of this paper.

3 Preliminaries

We first establish the fundamentals of Denoising Diffusion Implicit Models (DDIMs). In this model,
a backward pass (denoising) is the process that generates an image from a seed noise. A forward pass
is the process of adding noise gradually to an image until it becomes pure Gaussian noise. Inversion
is similar to the forward pass but the goal is to end with a specific Gaussian noise that would generate
the image if denoised.

Forward Pass in Diffusion Models. Latent diffusion and consistency models learn to generate
images through a systematic process of iteratively adding Gaussian noise to a latent data sample
until the data distribution is mostly noise. The data distribution is subsequently gradually restored
through a reverse diffusion process initiated with a random sample (noise seed) from a Gaussian
distribution. In more detail, the process of mapping a (latent) image to noise is a Markov chain
that starts with z0, and gradually adds noise to obtain latent variables z1, z2, . . . , zT , following
q(z1, z2, . . . , zT |z0) = ΠT

t=1q(zt|zt−1), where ∀t : zt ∈ Rd with d denoting the dimension of the
space. Each step in this process is a Gaussian transition

q(zt|zt−1) ∼ N (zt,
√

1− βtzt−1, βtI), (1)

parameterized by a schedule β0, β1, . . . , βT ∈ (0, 1).

Denoising Diffusion Implicit Models (DDIM). Sampling from diffusion models can be viewed
alternatively as solving the corresponding diffusion Ordinary Differential Equations (ODEs) [18].
DDIM [32] scheduler, a popular deterministic scheduler, proposed denoising a latent noise vector in
the following way:

zt−1 =

√
αt−1

αt
zt −

√
αt−1 ·∆ψ(αt) · ϵθ(zt, t, p), (2)

where ψ(α) =
√

1
α − 1, and ∆ψ(αt) = ψ(αt)− ψ(αt−1).

ϵθ(zt, t, p) is the output of a network that was trained to predict the noise to be removed.

DDIM inversion. We now focus on inversion in the latent representation. Given an image representa-
tion z0 and its corresponding text prompt p, we seek a noise seed zT that, when denoised, reconstructs
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Figure 2: Newton-Raphson Inversion iterates over an implicit function (Eq. 8), at every time step in
the inversion path. It starts with z0t = zt−1 and quickly converges (within 2 iterations) to zt. Each
box denotes one inversion step; black circles correspond to intermediate latents in the denoising
process; green circles correspond to intermediate Newton-Raphson iterations.

the latent z0. Several approaches were proposed for this task, and we focus on DDIM inversion. In
this technique, Eq. (2) is rewritten as:

zt = f(zt) (3)

f(zt) :=

√
αt

αt−1
zt−1 +

√
αt ·∆ψ(αt) · ϵθ(zt, t, p).

DDIM inversion approximates this implicit equation in zt by replacing zt with zt−1

≈
√

αt

αt−1
zt−1 +

√
αt ·∆ψ(αt) · ϵθ(zt−1, t, p). (4)

The quality of the approximation depends on the difference zt − zt−1 (a smaller difference would
yield a small error) and on the sensitivity of ϵθ to that zt. See [7, 32] for details.

By applying Eq. (4) repeatedly for every denoising step t, one can invert an image latent z0 to a latent
zT in the seed space. DDIM inversion is fast, but the approximation of Eq.( 4) inherently introduces
errors at each time step. As these errors accumulate, they cause the whole diffusion process to become
inconsistent in the forward and the backward processes, leading to poor image reconstruction and
editing [22, 23, 33]. This is particularly noticeable in consistency models with a small number of
DDIM steps (typically 2-4 steps), where there’s a significant gap between zt and zt−1, see Figure
5(b).

Iterative inversion optimization methods: Several papers proposed to improve the approximation
using iterative methods [13, 23]. AIDI [23] proposed to directly solve Eq.(4) using fixed-point
iterations [5], a widely-used method in numerical analysis for solving implicit functions. They solve
z = f(z) using fixed-point iterations. In a related way, [13] solves a more precise inversion equation,
obtained by employing higher-order terms, using gradient descent.

4 Our method: Regularized Newton Raphson Inversion

DDIM inversion above often yields poor reconstruction accuracy. Proposed improvements described
above have a linear convergence rate and may take many seconds to compute. In this paper we
describe a faster and more robust alternative based on the well-known Newton-Raphson method
(NR) [16]. Newton-Raphson is a method for iteratively finding the roots of a system of equations.

A naive Newton-Raphson approach. Consider first a naive way to apply NR to the inversion
problem. We can define the following vector residual function,

r(zt) := zt − f(zt) (5)

where r : Rd → Rd, and then seek its zero-crossing roots. That is, find those roots zt for which
r(zt) = 0, meaning that the two vectors zt, f(zt) are identical. For this problem, NR operates in
the following way [6]. Given an initial guess z0, It iterates zk+1

t = zkt −
(
J(zkt )

)−1 · r(zkt ), where
(J(zkt ))

−1 presents the inverse of a Jacobian matrix J ∈ Rd×d (all derivatives are w.r.t to z). In our
case, applying this naive scheme is impractical, because the dimension of z is high (d ≈ 16K in
StableDiffusion [26]), making it too expensive to compute the Jacobian in terms of time- and memory
cost, and inverting it becomes practically infeasible.
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Figure 3: (a) Convergence rate. Comparison of iterative methods in an image inversion-
reconstruction task over the COCO validation set. The mean PSNR of reconstructed images is
plotted against the number of iterations. The dashed line represents the upper bound on reconstruction
quality determined by the VAE in Stable Diffusion. Mean convergence time (in seconds) is denoted
for each method. Our RNRI achieves a PSNR close to the upper limit and converges within only
1-2 iterations. (b) Prior effect on convergence. Incorporating our prior not only aids in finding the
correct solution but also accelerates convergence.

To address this computational limitation, we propose to apply NR to a multi-variable, scalar function
instead. Specifically, apply a norm over r(zt), r̂ : Rd → R+

0 :
r̂(zt) := ||zt − f(zt)|| (6)

and seek for solutions that satisfy r̂(zt) = 0. Here, || · || denotes a norm; we used L1 to simply
sum over all absolute values of r̂. This reduction transforms the Jacobian matrix into a vector,
making it easy and fast for computation (see derivation in Appendix A). Under some conditions, and
particularly when there is only a single root in the ϵ-neighborhood of the initial guess, the Newton-
Raphson method can be proved to have a quadratic convergence rate [16]. In fact, r̂ introduces an
underdetermined equation that may have multiple roots, and in practice, we find that solving Eq. 6
for r(zt) = 0 often converges to a solution that is out-of-distribution for the diffusion model. This
inversion solution leads to bad reconstruction. We address this issue in the next section.

4.1 Regularized Newton Raphson

To address the undetermined nature of our equation we suggest adding a regularization term, that can
be viewed also as a soft constraint, to the Newton-Raphson objective. More precisely, since each step
in the diffusion process follows a Gaussian distribution q(zt|zt−1) (Sec 3, Eq. 1), we add a prior over
the values of zt, by adding the negative log-likelihood as a regularizing penalty term to the objective.
The objective is thus:

F(zt) := ||zt − f(zt)||1 − λ

d∑
j=1

log qj(zt|zt−1) (7)

Here, λ > 0 is a hyperparameter weighting factor for the regularization, and qj is the j’th component
of q(zt|zt−1) (refer to Appendix D for more details). We now seek a solution that satisfies F(zt) = 0.
Note that this equation is strictly satisfied iff the residual r̂(zt) = 0 and the probabilities qj(zt|zt−1) =
1, for all j.

The Newton Raphson iteration scheme for finding roots of our scalar function in Eq. (7) is given by
(see derivation in Appendix A):

z0t = zt−1

zk+1
t (i) = zkt (i)−

1

d

F(zkt )

gi(zkt ) + η
. (8)

Here gi :=
∂F(zt)
∂zt(i)

is the partial derivative of F with respect to the variable (descriptor) zt(i). η is a
small constant added for numerical stability and i ∈ [0, 1, ..., d] indicates z’s components. g can be
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Figure 4: Prompt-aware adjustment for more consistent inversion. (a) A seed zT is used for
generating a latent image z0, then decoded into an image x. If x is encoded into the latent space
zE0 = E(x), its representation zE0 may not be aligned with the prompt used for inversion and
generation (brown dashed line). As a result, the reconstructed ẑE0 differs significantly from zE0 ,
yielding an inconsistent image x′. (b): Inconsistency can be fixed using a short noising and denoising
iterations (red curves), which yields z̃0. Then, applying the complete backward-forward process
(green curves) can generate a consistent z̃0.

computed efficiently using automatic differentiation engines. We initialize the process with z from
the previous diffusion timestep. Figure 2 illustrates this process. Note that while the solution of Eq. 7
matches the minimizer of F , we employ the NR scheme to solve the equation. We call our approach
Regualarized Newton Raphson Inversion (RNRI). Figure 3 (left) depicts the effect of the number of
running iterations on image reconstruction, in terms of PSNR, compared to other iterative methods.
The figures illustrate that RNRI converges in only 1-2 iterations, achieving a PSNR close to the upper
bound set by the diffusion model VAE. Figure 3 (right) shows the impact of prior on the residual. We
depict residual curves for 50 random COCO images. Regularization yields superior outcomes, as
evidenced by lower residuals.

4.2 Prompt-aware adjustment for consistent inversion

We now focus on an important subtlety that greatly impacts inversion quality. Our inversion process is
designed to agree with a generation process for a prompt p. However, inversion is typically applied to
photos and images that are not generated by the model. Such an image x is mapped into the latent z0
in a way that is unaware of the prompt because the VAE encoder is prompt-agnostic. This means that
the typical input to our inversion process may be inconsistent with the prompt we use. This problem
is illustrated in Figure 4(a). Here, we randomly sampled zT and ran the forward process with the
prompt “A cute dog". This results in a denoised latent z0 which is decoded into an image x. Then,
zE0 is obtained by passing x through the encoder E. In terms of L2 distance, zE0 differs only slightly
from z0, but it is not consistent with the prompt p (outside the dashed circle). As a result, applying
inversion and reconstruction (dashed brown lines) from zE0 yields a reconstructed latent ẑE0 that is
far from z0. As a consequence, when ẑE0 is decoded by the VAE, it results in a different image x′ of
“a cute dog". This illustrates that inversion becomes inconsistent when applied to prompt-agnostic
latents. To quantify this effect, we repeated this experiment for 10k images and found the mean L2

distance between z0 and ẑE0 (||z0 − ẑE0 ||) to be 99. In comparison, the mean distance between z0 and
zE0 (||z0 − zE0 ||) is only 16. This indicates that the inversion process produces latents that deviate
significantly from the original z0.

How can this inconsistency be resolved? We propose to employ a short preprocessing step of fixed-
point iteration [5]. The objective is to find a fixed point z0 for the implicit function z0 = h(z0, p), with
h representing the backward-forward process and p is the prompt that would be used for inversion.
The initial guess for the fixed-point iterations is zE0 = E(x). The iteration count should be kept small
to prevent excessive alteration of the latent z0 as this could potentially affect the visual appearance
of the original image. In practical terms, we observed that a brief cycle of fixed-point iteration,
involving two noise-addition steps (forward process) followed by two denoising steps with the prompt
p (backward process), proves effective.

This process is illustrated in Figure 4(b). Here, we pre-process zE0 by two fixed-point iterations to
obtain an improved latent z̃0 (red lines). z̃0 is decoded to a very similar image x and results with
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consistent inversion (dashed green lines). For 10k images, we found that the L2 distance between
z0 and z̃0 (i.e., ||z0 − z̃0||) is only 12. This illustrates that the proposed pre-processing method is
capable of maintaining a highly consistent backward-forward process. More detailed in Appendix F.

Editing with large guidance scale.

Table 1: Comparing inversion performance of iterative
methods with and without prompt-aware adjustment,
using large guidance scale.

PSNR #iter Tconv
[sec]

w/o Prompt-Aware Adjustment
Fixed-point [23] 10.2 diverge inf
Gradient Descent [13] 12.5 diverge inf
RNRI (ours) 19.3 3 2.8

w/ Prompt-Aware Adjustment
Fixed-Point 25.4 5 4.1
Gradient Descent 25.5 20 16.3
RNRI (ours) 25.8 2 2.61

Guidance scale plays a crucial role in edit-
ing tasks, with larger scales typically result-
ing in better and more natural edits [20].
Current iterative methods struggle to per-
form inversion with large guidance scales.
This difficulty can be explained by the in-
consistency between a given real image
and a prompt, as described above. The
guidance scale amplifies the influence of
the prompt, intensifying this inconsistency
and impeding convergence in current meth-
ods. [13] proposes the use of a different
solver that requires significantly more itera-
tions. [23] suggest inverting the image with
a low guidance scale and then using a larger
scale for editing specific regions identified
by cross-attention maps. We demonstrate
that prompt-aware adjustment enables iter-
ative methods to perform inversion effectively by aligning a real image with a given prompt. Table
1 presents a comparison of inversion performance between different iterative methods, with and
without prompt-aware adjustment. Guidance scale was set to 7.5 (the default for StableDiffusion
v2.1). The results indicate that prompt-aware adjustment enhances the performance of all methods in
terms of PSNR, number of iterations (#iter), and convergence time (Tconv).

5 Experiments

We evaluate our approach on three main tasks: (1) Image inversion and reconstruction: Here, We
assess the inversion fidelity by evaluating the quality of the reconstructed images. (2) Real-time
Image Editing: We demonstrate the efficacy of our inversion scheme in image editing, highlighting
its ability to facilitate real-time editing. (3) Rare Concept Generation: We illustrate how our method
can be applied to improve the generation of rare concepts.

Compared Methods: We compared our approach with the following methods. (1) Standard DDIM
Inversion [32]. (2) Null-text [22]. (3) EDICT [33]. (4) AIDI [23] (fixed-point based method).
(5) ReNoise [10] (fixed-point based method) (6) ExactDPM [13] (gradient-based method). In all
experiments, we used code and parameters provided by the respective authors.

Implementation details: To demonstrate the versatility of our approach, we conducted experiments
on both the Latent Diffusion Model (LDM) using Stable Diffusion v2.1 and the Latent Consistency
Model (LCM) using [30]. Input images were resized to 512 × 512. For LDM, we used 50 sampling
steps, and for LCM, 4 steps. All baselines ran until convergence, while RNRI was run for 2 iterations
per diffusion step. All methods were tested on a single A100 GPU for a fair comparison. PyTorch’s
built-in gradient calculation was used for computing derivatives of Eq. 7.

5.1 Image Reconstruction

To evaluate the fidelity of our approach, we measure PSNR of images reconstructed from seed
inversions. Specifically, we used the entire set of 5000 images from the MS-COCO-2017 validation
dataset [17], along with their corresponding captions. For each image-caption pair, we first found
the inverted latent and then used it to reconstruct the image using the same caption. Given that
the COCO dataset provides multiple captions for each image, we used the first listed caption as a
conditioning prompt. Figure 5 (left) shows PSNR of reconstructed images in relation to inversion
time, demonstrating the performance of our approach compared to SoTA inversion methods. Time
is measured on a single NVIDIA A100 GPU for all methods. The dashed black line is the upper
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Figure 5: (a) Inversion Results: Mean reconstruction quality (y-axis, PSNR) and runtime (x-axis,
seconds) of four inversion methods on the COCO2017 validation set. (Left) Performance on latent
diffusion model. All methods run for 50 inversion steps. Our method reaches high PSNR with ×4
to ×12 shorter inversion-reconstruction time compared to other methods. (Right) Performance on
latent consistency model. All methods run for 2 inversion steps. Our method archives the highest
PSNR in less than 0.5 seconds, significantly faster than other methods, which typically take 7 to 10
times longer. This allows for real-time inversion and editing capabilities using our approach. (b)
Reconstruction qualitative results: Comparing image inversion-reconstruction performance. While
DDIM fails to preserve a close connection to the original image, ReNoise creates rather a blurry
image reflected in lower PSNR.

Figure 6: Evaluation of editing performance: RNRI achieves superior CLIP and LPIPS scores,
indicating better compliance with text prompts and higher structure preservation.

bound induced by the Stable Diffusion VAE. It shows that our method is able to achieve comparable
PSNR to recent methods and close to the upper bound of VAE, yet accomplishes this in the shortest
amount of time. Furthermore, in contrast to other methods, our approach accurately inverts an image
to a single latent vector without requiring additional memory. Figure 5(right) further demonstrates a
qualitative comparison of reconstructed images. We provide in the Appendix E an additional analysis.

5.2 Real-Time Image Editing

Image editing from text is the task of making desirable changes in certain image regions, well blended
into the image, while preserving the rest of the image intact. Current state-of-the-art methods for
editing images start by inverting a real image into latent space and then operating on the latent. As a
result, the quality of editing depends strongly on the quality of inversion [22].

We now evaluate the effect of inverting images with RNRI, compared to state-of-the-art inversion
baselines. We used Prompt2Prompt [11] as our editing method. We show that RNRI outperforms all
baselines in editing performance while requiring the shortest time (less than 0.5 seconds per image, in
latent consistency models). This opens the door for real-time editing capabilities. Videos where we
show real-time editing performance using RNRI can be found in supplementary material (attached
zip file). We present below both qualitative and quantitative results.
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Figure 7: Qualitative results of image editing. RNRI edits images more naturally while preserving
the structure of the original image. All baselines were executed until they reached convergence,
whereas our approach was run for two iterations per diffusion step.

Qualitative results. Figure 7 gives a qualitative comparison between SoTA approaches and RNRI in
the context of real image editing. RNRI excels in accurately editing with target prompts producing
images with both high fidelity to the input image and adherence to the target prompt. The examples
illustrate how alternative approaches may struggle to retain the original structure or tend to overlook
crucial components specified in the target prompt. As an example, in the second row of Figure 7,
RNRI exclusively converts the kitten into a Lego figure, whereas other methods either fail to achieve
this or alter the basket and branch as well. In the third row, all LDM-based methods struggle to
accurately substitute bananas with oranges, and ReNoise [10] alters the background. In contrast,
RNRI accurately edits the object while maintaining the original background. More results in supp. E.

User Study. We further evaluated editing quality using human raters. We followed the evaluation
process of [22] and asked human raters to rank edits made by three methods. 60 images were rated,
12 images were provided by the authors of [22] and the rest were randomly selected from the COCO
dataset [17]. Three raters for each image were recruited through Amazon Mechanical Turk and were
tasked to choose the image that better applies the requested text edit while preserving most of the
original image. RNRI was preferred by raters in 40.4% of cases using Latent Diffusion Model (LDM),
outperforming Null text [22](12.2%), EDICT [34] (17.8%), and AIDI [23] (29.6%). For Latent
Consistency Model (LCM), RNRI was overwhelmingly favored, with 89.9% preference compared to
ReNoise’s [10] 10.1%.

LPIPS vs CLIP Score. Following [15,33], we evaluate the results using two complementary metrics:
LPIPS [35] to quantify the extent of structure preservation (lower is better) and a CLIP-based score
to quantify how well the generated images comply with the text prompt (higher is better). Metrics are
averaged across 100 MS-COCO images. Figure 6 illustrates that editing with RNRI yields a superior
CLIP and LPIPS score, demonstrating the ability to perform state-of-the-art real image editing with
superior fidelity. It further affirms the findings derived from the user study.
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Table 2: Image interpolation and centroid finding. In interpolation, two images x1, x2 are inverted
to generate images between their seeds z1T , z

2
T . In centroid-finding, a set of images is inverted to find

their centroid. Acc and FID scores improved using RNRI as the inversion method.

Interpolation [29] Centroid [28]

ACC ↑ FID ↓ ACC↑ FID ↓
DDIM Inversion 51.59 6.78 67.24 5.48
AIDI [23] 52.01 6.13 68.14 5.32
RNRI (ours) 54.98 5.91 70.18 4.59

Table 3: Inversion Quality Impact on Rare Concept Generation: We assess image generation
using a pre-trained classifier’s accuracy, comparing NAO [28] (with DDIM inversion), AIDI [23],
and RNRI. We report average per-class accuracy for Head (over 1M samples), Medium, and Tail
(rare classes <10K samples). RNRI enhances rare and medium concept accuracy without sacrificing
overall performance.

ImageNet1k in LAION2B

Head Medium Tail Total Acc FID T̂Init T̂Opt

n=235 n=509 n=256 (sec) (sec)
Methods #>1M 1M>#>10K 10K>#

DDIM inversion 98.5 96.9 85.1 94.3 6.4 25 29

AIDI 98.5 97.0 85.3 94.4 6.9 24 28

RNRI (ours) 98.6 97.9 89.1 95.8 6.3 17 25

5.3 Seed Interpolation and Rare Concept Generation

Following the methodologies outlined in [28, 29], we attempt to generate images that are rare
according to the diffusion training distribution. As demonstrated in these studies. This imbalance
often leads to the generation of distorted or conceptually incorrect images. To address this issue,
SeedSelect [29] takes a few images of a rare concept as input and uses a diffusion inversion module
to iteratively refine the obtained seeds. These refined seeds are then used to generate new plausible
images of the rare concept. NAO [28] extends this by introducing new paths and centroids for seed
initialization. Both methods rely on DDIM Inversions, crucial for initial seed evaluation. Our work
provides an alternative for precise inversion seeds, aiming for improved image quality and semantic
accuracy. It’s important to highlight that most inversion techniques [4, 15, 22, 33] are not applicable
in this context as they necessitate extra parameters for image reconstruction, which impedes the
straightforward implementation of interpolation and centroid identification as suggested by NAO.

We now provide results for seed interpolation and rare concept generation.

Interpolation and centroid finding: We evaluate RNRI for image interpolation and centroid finding.
We follow the experimental protocol of [28] and compare images generated by DDIM with those
produced by AIDI [23] and RNRI. Evaluation is conducted based on FID score and image accuracy,
assessed using a pre-trained classifier. See details in [28]. Results are presented in Table 2. Notably,
in comparison to DDIM and AIDI inversions, initializing with our seeds consistently results in
higher-quality images both in interpolation paths and seed centroids.

Rare concept generation: We further show the effect of our seed inversions on the performance
of NAO centroids with SeedSelect for rare concept generation. Specifically, we compared images
generated by SeedSelect initialized with NAO using DDIM inversion (NAO(DDIM) in Table 3) and
using RNRI (NAO(RNRI)). We followed the evaluation protocol of [28, 29] on ImageNet1k classes
arranged by their prevalence in the LAION2B dataset [31]. This dataset serves as a substantial “in the
wild" dataset employed in training foundation diffusion models, such as Stable Diffusion [26]. Image
quality is measured by FID and accuracy of a pre-trained classifier. For more details see [28, 29].
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The results, summarized in Table 3, demonstrate that our inversion method significantly boosts
performance, both in accuracy and FID, compared to DDIM inversions. Furthermore, our inversions
yield a more precise and effective initialization point for SeedSelect [29], resulting in notably quicker
convergence (see Table 3) without compromising accuracy or image quality, in all categories (head,
medium and tail) along with high gap at tail.

6 Limitations and Summary

Image inversion in diffusion models is vital for various applications like image editing, semantic
augmentation, and generating rare concept images. Current methods often sacrifice inversion quality
for computational efficiency, requiring significantly more compute resources for high-quality results.
This paper presents Regularized Newton-Raphson Inversion (RNRI), a novel iterative approach that
balances rapid convergence with superior accuracy, execution time, and memory efficiency. Using
RNRI opens the door for real-time image editing. Despite its effectiveness, we encounter challenges.
Despite demonstrating empirical convergence on a large-scale dataset, the model, like any iterative
scheme, may fail to converge for certain images. We specifically identified such failure cases with
incorrect prompts. (more details in Appendix G).

References
[1] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala,

Timo Aila, Samuli Laine, Bryan Catanzaro, et al. eDiff-I: Text-to-image diffusion models with an ensemble
of expert denoisers. arXiv preprint arXiv:2211.01324, 2022. 1, 2

[2] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization 2020. SIAM, Philadel-
phia, 2021. 2

[3] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004. 2
[4] Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian

Kersting, and Apolinaros Passos. Ledits++: Limitless image editing using text-to-image models. In CVPR,
2024. 3, 10

[5] J. Douglas Burden, Richard L.; Faires. Fixed-point iteration. 1985. 4, 6
[6] R.L. Burden, J.D. Faires, and A.M. Burden. Numerical Analysis. Cengage Learning, 2015. 2, 4
[7] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. NeurIPS, 2021. 4
[8] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel

Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion.
ICLR, 2023. 2

[9] Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. Designing
an encoder for fast personalization of text-to-image models. arXiv preprint arXiv:2302.12228, 2023. 2

[10] Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise: Real
image inversion through iterative noising. arXiv preprint arXiv:2403.14602, 2024. 3, 7, 9, 17

[11] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-
prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022. 2, 8

[12] Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact inversion
of dpm-solvers. Accepted to CVPR, 2024. 2

[13] Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact inversion
of dpm-solvers, 2024. 2, 3, 4, 7

[14] Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang,
Shifeng Chen, and Liangliang Cao. Diffusion model-based image editing: A survey. ArXiv, 2024. 3

[15] Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise space:
Inversion and manipulations. arXiv:2304.06140, 2023. 3, 9, 10

[16] Nick. “Thomas Simpson Kollerstrom. ’newton’s method of approximation’: An enduring myth. The
British Journal for the History of Science, 1740. 2, 4, 5

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014. 7, 9

[18] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: a fast ode
solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information
Processing Systems, 35:5775–5787, 2022. 3

[19] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing
high-resolution images with few-step inference, 2023. 2

[20] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In ICLR, 2022. 7

11



[21] Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast image
inversion for editing with text-guided diffusion models. arXiv preprint arXiv:2305.16807, 2023. 3

[22] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing
real images using guided diffusion models. CVPR, 2023. 2, 3, 4, 7, 8, 9, 10

[23] Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing with
accelerated iterative diffusion inversion. In ICCV, 2023. 2, 3, 4, 7, 9, 10

[24] Zhimao Peng, Zechao Li, Junge Zhang, Yan Li, Guo-Jun Qi, and Jinhui Tang. Few-shot image recognition
with knowledge transfer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 441–449, 2019. 2

[25] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022. 1, 2

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022. 1, 2, 3, 4, 10

[27] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-
image diffusion models with deep language understanding. NeurIPS, 2022. 1, 2

[28] Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, and Gal Chechik. Norm-guided latent space
exploration for text-to-image generation. NeurIPS, 2023. 2, 10, 13, 14

[29] Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal Chechik. Generating images of rare
concepts using pre-trained diffusion models. AAAI, abs/2304.14530, 2024. 2, 10, 11, 13, 14

[30] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation,
2023. 2, 7

[31] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. LAION-5B: An open large-scale
dataset for training next generation image-text models. NeurIPS, 2022. 10

[32] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. ICLR, 2021. 2, 3,
4, 7

[33] Bram Wallace, Akash Gokul, and Nikhil Vijay Naik. EDICT: Exact diffusion inversion via coupled
transformations. CVPR, 2022. 2, 3, 4, 7, 9, 10

[34] Guoqiang Zhang, Jonathan P Lewis, and W Bastiaan Kleijn. Exact diffusion inversion via bi-directional
integration approximation. arXiv:2307.10829, 2023. 3, 9

[35] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018. 9

12



Supplemental Material

A Newton method for Multivariable Scalar Function

In this section, we will show the formulation of Newton’s method for zero crossing of a multi-variable
scalar function. For a vector x ∈ Rn and a function f(x) : Rn → R we are looking for the roots of
the equation f(x) = 0. Assuming that the function f is differentiable, we can use Taylor expansion:

f(x+ δ) = f(x) +∇f δT + o(||δ||2) (9)

For every δ,x ∈ Rn. The idea of Newton’s method in higher dimensions is very similar to the
one-dimensional scalar function; Given an iterate xk, we define the next iterate xk+1 by linearizing
the equation f(xk) = 0 around xk as above, and solving the linearized equation f(xk + δ) = 0.
Dropping the higher orders in Equation (9) and solving the remaining linear equation for δ we get:

δ = − 1

n

[
1
∂f
∂x1

,
1
∂f
∂x2

, ...,
1
∂f
∂xn

]
f(xk) (10)

where xi indicates the i-th component of vector x. The above can be easily proven by substitution of
δ into Equation (9). Using the relation, δ = xk+1 − xk we get the final iterative scheme:

xk+1
i = xki − 1

n

f(xk)
∂f
∂xi

(xk)
(11)

Note that this equation is component-wise i.e. each component is updated separately, facilitating the
solution.

B Seed Exploration & Rare concept generation

Fig. S 1: Generating rare concepts based on a few examples with the method of [28] that heavily
depends on the diffusion-inversion quality. In our comparison, we evaluate RNRI alongside DDIM
(refer to the discussion in the main paper). DDIM frequently struggles to produce a realistic
representation of certain objects (such as Oxygen-mask or Patas Monkey) or an accurate depiction of
specific concepts (like Tiger-cat or Pay-phone). However, the use of RNRI rectifies these issues in
the results. For a detailed quantitative comparison, please refer to the main paper. See the main paper
for a quantitative comparison.

Figure S1 further displays results for the rare-concept generation task introduced in [28, 29]. The
objective is to enable the diffusion model to generate concepts rarely seen in its training set by using
a few images of that concept. Both methods in [28, 29] utilize diffusion inversion for this purpose. In
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Fig. S 2: The influence of λ on reconstruction performance. We observe that employing no
regularization (λ = 0) leads to poor reconstruction, while λ = 0.1 typically yields the highest
reconstruction accuracy. As λ increases, reconstruction accuracy declines, possibly because assigning
excessive weight to the prior undermines the root-finding objective.

Fig. S 3: Qualitative comparison for image reconstruction. While DDIM reconstructed images
are likely far from the original one, reconstruction from RenNoise still contains inconsistencies (the
table at the 1st, lion image distortion or the texture in the teddy bear). RNRI shows nearly exact
reconstruction. The accuracy in Reconstruction is later reflected in downstream tasks e.g. editing or
long-tail generation. All methods were executed until they achieved convergence.

the main paper, we presented experiments showcasing the impact of our new inversion process on the
outcomes of [28, 29].

We provide qualitative results based on NAO [28] centroid computation when utilizing RNRI,
contrasting them with those obtained through DDIM inversions. The illustrations demonstrate that
RNRI is capable of identifying high-quality centroids with correct semantic content compared to
centroids found by DDIM.

C The Effect of the prior

In this section, we examine the impact of incorporating our regularization term in the objective
function F in Eq. (7). We measure the effect in two aspects: 1) The remainder for the full objective
function F in Eq. (7) at the predicted solution and the original residual (also known as fidelity
term), r(zt) = zt − f(zt) in Eq. (6). Note that r(zt) indicates how accurately the DDIM equation is
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Fig. S 4: Qualitative comparison for image editing: Illustrates how alternative approaches may
struggle to preserve the original structure or overlook crucial components specified in the target
prompt, while RNRI succeeds in editing the image properly.

satisfied. Monitoring the residual r as shown in Figure S2(a) reveals that incorporating our prior not
only aids in finding the correct solution (as shown by PSNR results) but also accelerates convergence.
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Fig. S 5: Various editing with same input: Note the RNRI capability in both subtle and extensive
changes as one would expect from the particular prompt change.

Fig. S 6: Effect of prompt-aware adjustment on image inversion. Here we show the strong impact of
our prompt-aware adjustment on the reconstruction results. Without the adjustment, the results are
often unrealistic or far from the original image.

D Prior trade-off parameter λ

Figure S2(b) shows the impact of the weight parameter λ on the reconstruction accuracy. We
observe that using no regularization (λ = 0) results in poor reconstruction, whereas setting λ = 0.1
achieves the highest reconstruction accuracy, underscoring the importance of the prior in the objective
function. There is a gradual decrease with larger λ values, where at λ = 1 the PSNR starts to decline
faster, likely because placing too much emphasis on the prior compromises the residual root-finding
objective.

16



Fig. S 7: Failure cases: RNRI fails to converge where the prompt and image do not align.

E Additional Qualitative Results

In this section, we present additional qualitative comparisons involving RNRI and baseline methods.
Figure 3 provides insights into inversion-reconstruction, showcasing that RNRI reaches a better
reconstruction quality compared to DDIM and ReNoise [10].

Figures 4 provide further comparisons for real-image editing. These figures illustrate how alternative
approaches may struggle to preserve the original structure or overlook crucial components specified
in the target prompt. Looking at the Latent Diffusion results, in the first row of Figure S4, RNRI
correctly transforms food into flowers, while other methods fail to do so. Row six shows an example
of RNRI success (clean water instead of dirty), where other alternatives totally fail. The last row of
Figure S4 depicts a failure case of our method, where it could not transform the cake into a hat as
requested. Editing for Latent Consistency Models (LCM) is more challenging due to the extremely
low number of time steps (aimed for speed-up). While ReNoise and RNRI achieve success in the first
two rows, rows 3-6 demonstrate instances where ReNoise fails in comparison to RNRI. The last row
illustrates a scenario where both methods fail.

Figure S5 shows the outcomes of various edits on the same image, providing additional confirmation
that inversion with RNRI yields modification of the pertinent parts in the image while maintaining
the original structure.

F The Effect of Prompt-Aware Adjustment

Figure S6 presents qualitative results demonstrating the impact of prompt-aware adjustment on
image inversion and reconstruction, as proposed in Section 4.2 of the main paper. These results
provide qualitative justification for the findings presented in the paper, highlighting that, without
prompt-aware adjustment, reconstructed images differ from the original.

G RNRI Convergence

Here we provide information about an analysis to find failure cases for convergence We ran inversion
and reconstruction, in scale, on COCO2017 (118k caption-image pairs) and found that in 95.4% of
cases, RNRI successfully converged to a solution. Specifically, residuals went down from ∼ 1 (for
DDIM) to < 10−4 indicating convergence, and the PSNR was > 25.7 indicating good solutions. The
remaining 4.6% were samples with incorrect captions, see Fig. S7. These results imply that lack of
convergence may indicate text and image miss-alignment which we consider for future work.
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